Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hand clapping, a ubiquitous human behavior, serves diverse daily-life purposes. Despite prior research, a comprehensive understanding of its physical mechanisms remains elusive. To bridge this gap, we integrate human data, parametric experiments, finite-element simulations, and theoretical frameworks to investigate the acoustic properties of clapping sound and their connections with the fluid flow and soft matter collision. Motion-audio synchronization reveals the flow-excitation nature of the hand cavity resonance. The classical Helmholtz resonator model, incorporating occasional pipe standing wave contributions for finger grooves, reliably predicts clapping sound frequencies across various real and engineered hand configurations. Material elasticity, coupled with the dynamic collision process, has minor effects on the sound frequency but a major impact on the temporal evolution of the sound signals, as reflected by the quality factors of resonance. Both spatial and dynamic factors for sound intensity are examined. We establish a quadratic scaling relationship between hand cavity gauge pressure and clapping speed, elucidating the positive correlation between faster claps and louder sounds. Our work advances the knowledge of hand-clapping acoustics and offers insights into sound signal synthesis, processing, and recognition. Furthermore, these findings may facilitate low-cost acoustical diagnostics in architecture and enhance rhythmic sound patterns in music and language education.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Free surface flows driven by boundary undulations are observed in many biological phenomena, including the feeding and locomotion of water snails. To simulate the feeding strategy of apple snails, we develop a centimetric robotic undulator that drives a thin viscous film of liquid with the wave speed$$V_w$$. Our experimental results demonstrate that the behaviour of the net fluid flux$$Q$$strongly depends on the Reynolds number$$Re$$. Specifically, in the limit of vanishing$$Re$$, we observe that$$Q$$varies non-monotonically with$$V_w$$, which has been successfully rationalised by Pandeyet al.(Nat. Commun., vol. 14, no. 1, 2023, p. 7735) with the lubrication model. By contrast, in the regime of finite inertia ($${Re} \sim O(1)$$), the fluid flux continues to increase with$$V_w$$and completely deviates from the prediction of lubrication theory. To explain the inertia-enhanced pumping rate, we build a thin-film, two-dimensional model via the asymptotic expansion in which we linearise the effects of inertia. Our model results match the experimental data with no fitting parameters and also show the connection to the corresponding free surface shapes$$h_2$$. Going beyond the experimental data, we derive analytical expressions of$$Q$$and$$h_2$$, which allow us to decouple the effects of inertia, gravity, viscosity and surface tension on free surface pumping over a wide range of parameter space.more » « lessFree, publicly-accessible full text available November 10, 2025
-
Abstract This study explores the impact of feathers on the hydrodynamic drag experienced by diving birds, which is critical to their foraging efficiency and survival. Employing a novel experimental approach, we analyzed the kinematics of both feathered and nonfeathered projectiles during their transition from air to water using high‐speed imaging and an onboard accelerometer. The drag coefficients were determined through two methods: a direct calculation from the acceleration data and a theoretical approach fitted to the observed velocity profiles. Our results indicate that feathers significantly increase the drag force during water entry, with feathered projectiles exhibiting approximately double the drag coefficient of their smooth counterparts. These findings provide new insights into the role of avian feather morphology in diving mechanics and have potential implications for the design of bioinspired aquatic vehicles in engineering. The study also discusses the biological implications of increased drag due to feathers and suggests that factors such as body shape might play a more critical role in the diving capabilities of birds than previously understood.more » « less
-
Certain fox species plunge-dive into snow to catch prey (e.g., rodents), a hunting mechanism called mousing. Red and arctic foxes can dive into snow at speeds ranging between 2 and 4 m/s. Such mousing behavior is facilitated by a slim, narrow facial structure. Here, we investigate how foxes dive into snow efficiently by studying the role of skull morphology on impact forces it experiences. In this study, we reproduce the mousing behavior in the lab using three-dimensional (3D) printed fox skulls dropped into fresh snow to quantify the dynamic force of impact. Impact force into snow is modeled using hydrodynamic added mass during the initial impact phase. This approach is based on two key facts: the added mass effect in granular media at high Reynolds numbers and the characteristics of snow as a granular medium. Our results show that the curvature of the snout plays a critical role in determining the impact force, with an inverse relationship. A sharper skull leads to a lower average impact force, which allows foxes to dive head-first into the snow with minimal tissue damage.more » « less
-
Abstract Fluid-mechanics research has focused primarily on droplets/aerosols being expelled from infected individuals and transmission of well-mixed aerosols indoors. However, aerosol collisions with susceptible hosts earlier in the spread, as well as aerosol deposition in the nasal cavity, have been relatively overlooked. In this paper, two simple fluid models are presented to gain a better understanding of the collision and deposition between a human and aerosols. The first model is based on the impact of turbulent diffusion coefficients and air flow in a room on the collisions between aerosols and humans. Infection rates can be determined based on factors such as air circulation and geometry as an infection zone expands from an infected host. The second model clarifies how aerosols of different sizes adhere to different parts of the respiratory tract. Based on the inhalation rate and the nasal cavity shape, the critical particle size and the deposition location can be determined. Our study offers simple fluid models to understand the effects of geometric factors and air flows on the aerosol transmission and deposition.more » « less
-
We aim to develop a floor-cleaning design by exploiting oscillating bubbles combined with ambient pressure waves to clean various surfaces. Previous studies of this method in lab settings have proven its efficacy, but practical applications, especially concerning real-world conditions like dirt surfaces, remain largely unprobed. Our findings indicate that, excluding a configuration with a heavy mass bottom transducer, all tested configurations achieved approximately 60–70% cleaning performance. A slight improvement in cleaning performance was observed with the introduction of microbubbles, although it was within the error margin. Particularly noteworthy is the substantial reduction in water consumption in configurations with a water pocket, decreasing from 280 mL to a mere 3 mL, marking a significant step toward more environmentally sustainable cleaning practices, such as reduced water usage. This research provides implications for real-world cleaning applications, promising an eco-friendly and efficient cleaning alternative that reduces water usage and handles a variety of materials without causing damage.more » « less
-
The dispersion of plant pathogens, such as rust spores, is responsible for more than 20% of global crop yield loss annually. However, the release mechanism of pathogens from flexible plant surfaces into the canopy is not well understood. In this study, we investigated the interplay between leaf elasticity and rainfall, revealing how a flexible leaf structure can generate a lateral flow stream, with embedded coherent structures that enhance transport. We first modeled the linear coupling between drop momentum, leaf vibration, and the stream flux from leaf surfaces. With Lagrangian diagnostics, we further mapped out the nested coherent structures around the fluttering profile, providing a dynamical description for local spore delivery. We hope the mechanistic details extracted here can facilitate the construction of physically informed analytical models for local crop disease management.more » « less
An official website of the United States government
